International Journal of Mechanical and Production Engineering (IJMPE)
Follow Us On :
current issues
Volume-9,Issue-1  ( Jan, 2021 )
Past issues
  1. Volume-8,Issue-12  ( Dec, 2020 )
  2. Volume-8,Issue-11  ( Nov, 2020 )
  3. Volume-8,Issue-10  ( Oct, 2020 )
  4. Volume-8,Issue-9  ( Sep, 2020 )
  5. Volume-8,Issue-8  ( Aug, 2020 )
  6. Volume-8,Issue-7  ( Jul, 2020 )
  7. Volume-8,Issue-6  ( Jun, 2020 )
  8. Volume-8,Issue-5  ( May, 2020 )
  9. Volume-8,Issue-4  ( Apr, 2020 )
  10. Volume-8,Issue-3  ( Mar, 2020 )

Statistics report
Apr. 2021
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 94
Paper Published : 2094
No. of Authors : 5972
  Journal Paper

Paper Title :
Thermal Performance Optimization Of A Flat Plate Solar Water Heater Collector Using Matlab

Author :H.Vettrivel, P.Mathiazhagan

Article Citation :H.Vettrivel ,P.Mathiazhagan , (2013 ) " Thermal Performance Optimization Of A Flat Plate Solar Water Heater Collector Using Matlab " , International Journal of Mechanical and Production Engineering (IJMPE) , pp. 14-18, Volume-1,Issue-5

Abstract : Solar energy is becoming an alternative for the limited fossil fuel resources. One of the simplest and most direct applications of this energy is the conversion of solar radiation into heat, which can be used in water heating systems. A commonly used solar collector is the flat-plate. A lot of research has been conducted in order to analyze the flat-plate operation and improve its efficiency. This study presents a one-dimensional mathematical model for simulating the transient processes which occur in liquid flat-plate solar collectors. The proposed model simulates the complete solar collector system including the flat-plate and the storage tank. The model considers time-dependent thermo-physical properties and heat transfer coefficients and is based on solving equations which describe the energy conservation for the glass cover, air gap between cover and absorber, absorber, working fluid, insulation, and the storage tank. The differential equations were solved using the implicit finite-difference method in an iterative scheme and executed using the MATLAB. In order to verify the proposed method, an experiment was designed and conducted for several days with variable ambient conditions and flow rates. The comparison between the computed and measured results of the transient fluid temperature at the collector outlet showed a satisfactory convergence. The proposed method is an appropriate for the verification of the absorber and glass cover effectiveness, and to calculate the overall efficiency of the system along with the overall heat loss factor.

Type : Research paper

Published : Volume-1,Issue-5


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 45
| Published on 2014-01-23
IRAJ Other Journals
IJMPE updates
We are happy to announce that Dr. R. A. SAVANUR joined as the CHief Editor for IJMPE.
The Conference World