International Journal of Mechanical and Production Engineering (IJMPE)
Follow Us On :
current issues
Volume-11,Issue-5  ( May, 2023 )
Past issues
  1. Volume-11,Issue-4  ( Apr, 2023 )
  2. Volume-11,Issue-3  ( Mar, 2023 )
  3. Volume-11,Issue-2  ( Feb, 2023 )
  4. Volume-11,Issue-1  ( Jan, 2023 )
  5. Volume-10,Issue-12  ( Dec, 2022 )
  6. Volume-10,Issue-11  ( Nov, 2022 )
  7. Volume-10,Issue-10  ( Oct, 2022 )
  8. Volume-10,Issue-9  ( Sep, 2022 )
  9. Volume-10,Issue-8  ( Aug, 2022 )
  10. Volume-10,Issue-7  ( Jul, 2022 )

Statistics report
Sep. 2023
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 122
Paper Published : 2305
No. of Authors : 6568
  Journal Paper

Paper Title :
Development of Composite Lifespan Prediction Model for Expansion Joint using Field Data

Author :Jungsoo Oh, Bongsoo Lee, Sungphil Han, Jeonghyunyoo, Ingyu Choi

Article Citation :Jungsoo Oh ,Bongsoo Lee ,Sungphil Han ,Jeonghyunyoo ,Ingyu Choi , (2019 ) " Development of Composite Lifespan Prediction Model for Expansion Joint using Field Data " , International Journal of Mechanical and Production Engineering (IJMPE) , pp. 29-33, Volume-7,Issue-1

Abstract : In this study, vibration durability test was executed by applying the expansion length of expansion joint at the time of occurrence of water hammer as the operational data of hydraulic actuator on expansion joint, which is vulnerable to water hammer, among the components of plant facility. It was presumed that internal pressure and temperature condition inside the expansion as the factors that accelerate the durability at the time of vibration durability test, which was executed by accelerating the pressure and temperature condition. Hypothesis was made that the lifespan data for each pressure condition comply with inverse power model and it was verified. In addition, in the case of temperature condition, hypothesis was made that lifespan data comply with the Arrhenius model and it was verified by inducing the coefficient value of each model formula. On the basis of the each of the induced lifespan prediction formula, Eyring model-based lifetime prediction model formula was induced by reflecting the temperature and pressure condition simultaneously, and it was verified. It is planned to develop lifespan prediction model that reflect even the deterioration condition, which is one of the factors that accelerate the vibration durability lifespan in the future. Keywords - Accelerated life test, Expansion Joint, Lifespan Prediction, Vibration durability, Water hammer

Type : Research paper

Published : Volume-7,Issue-1


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 65
| Published on 2019-04-22
IRAJ Other Journals
IJMPE updates
Volume-11,Issue-5 (May, 2023 )
The Conference World