International Journal of Mechanical and Production Engineering (IJMPE)
Follow Us On :
current issues
Volume-12,Issue-1  ( Jan, 2024 )
Past issues
  1. Volume-11,Issue-12  ( Dec, 2023 )
  2. Volume-11,Issue-11  ( Nov, 2023 )
  3. Volume-11,Issue-10  ( Oct, 2023 )
  4. Volume-11,Issue-9  ( Sep, 2023 )
  5. Volume-11,Issue-8  ( Aug, 2023 )
  6. Volume-11,Issue-7  ( Jul, 2023 )
  7. Volume-11,Issue-6  ( Jun, 2023 )
  8. Volume-11,Issue-5  ( May, 2023 )
  9. Volume-11,Issue-4  ( Apr, 2023 )
  10. Volume-11,Issue-3  ( Mar, 2023 )

Statistics report
Apr. 2024
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 130
Paper Published : 2388
No. of Authors : 6802
  Journal Paper

Paper Title :
Vibration Analysis Using Finite Element Analysis (Fea): An Evaluation of Pico Tubular Bulb Turbine Blades Fabricated in Composite Materials

Author :Jeiel Uziel A. Luza, Noel M. Hernandez

Article Citation :Jeiel Uziel A. Luza ,Noel M. Hernandez , (2023 ) " Vibration Analysis Using Finite Element Analysis (Fea): An Evaluation of Pico Tubular Bulb Turbine Blades Fabricated in Composite Materials " , International Journal of Mechanical and Production Engineering (IJMPE) , pp. 86-95, Volume-11,Issue-11

Abstract : Tubular turbines have been widely employed and evolved fast when its introduction in the 1930s due to their strong technical and economic qualities and application. Because its performance and structure differ from those of ordinary vertical shaft units, local and international academics worked extensively on research techniques and technological means using numerical simulation and model testing. The transmissions of a high quantity of power, which may cause unwanted vibrations that reduce efficiency, increase wear, and, in the worst-case scenario, cause serious damage. In this paper, the material propose in order to substantiate that the random excitations and excess vibration of the pico-turbine can be prevented is the use of CFRP (carbon fiber reinforced polymer) and PLA (polylactic acid). In this paper, ANSYS® Mechanical modal simulation is used to evaluate the structures’ robustness behavior of the composite materials that were used as the main material in the fabrication of turbine blades for bulb-type turbine application. The use CFD simulation in SOLIDWORKS® is needed to examine the pressure fluctuation caused by unsteady flow that can contribute in the unwanted pulsation and to conform the modal simulation results. To validate the results, pressure pulsation experimentation is conducted to evaluate the fluctuation of the pressure affecting the blades or in the rotating region and it is analyzed through frequency response domain. Hence, in this paper, it is proven that the vibration behavior of the material is acceptable since the resulting natural frequency provides resulting stress, strain, and deformation that is allowable and below its ultimate tensile strength. Keywords - Composite Materials, Frequency Response, Pressure Pulsation, Natural Frequency, Pico-Turbine Hydropower Generation

Type : Research paper

Published : Volume-11,Issue-11


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 20
| Published on 2024-01-20
IRAJ Other Journals
IJMPE updates
Volume-12,Issue-1 (Jan, 2024 )
The Conference World