International Journal of Mechanical and Production Engineering (IJMPE)
Follow Us On :
current issues
Volume-12,Issue-2  ( Feb, 2024 )
Past issues
  1. Volume-12,Issue-1  ( Jan, 2024 )
  2. Volume-11,Issue-12  ( Dec, 2023 )
  3. Volume-11,Issue-11  ( Nov, 2023 )
  4. Volume-11,Issue-10  ( Oct, 2023 )
  5. Volume-11,Issue-9  ( Sep, 2023 )
  6. Volume-11,Issue-8  ( Aug, 2023 )
  7. Volume-11,Issue-7  ( Jul, 2023 )
  8. Volume-11,Issue-6  ( Jun, 2023 )
  9. Volume-11,Issue-5  ( May, 2023 )
  10. Volume-11,Issue-4  ( Apr, 2023 )

Statistics report
Jun. 2024
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 131
Paper Published : 2390
No. of Authors : 6806
  Journal Paper

Paper Title :
Evaluation of Metal Oxide Surge Arrester Models Based on Laboratory Experiments

Author :G. A. Alonso, S. Cardenas, B. Alba

Article Citation :G. A. Alonso ,S. Cardenas ,B. Alba , (2017 ) " Evaluation of Metal Oxide Surge Arrester Models Based on Laboratory Experiments " , International Journal of Mechanical and Production Engineering (IJMPE) , pp. 32-37, Volume-5,Issue-1

Abstract : Nowadays, in literature can be found many models of metal oxide surge arrester (MOSA) with the fundamental propose of be able to simulate their dynamic characteristic, differing the equivalent circuits of these proposed models in composition and parameters calculation, obtaining accurate results according to the criteria evaluated by their authors. It is well known that transient with fast form surges produce that the peak of the voltage wave occurs before the peak of the current wave and the residual voltage increases as the discharge current decreases. But the correct representation of the dynamic characteristic (frequency dependency) of the MOSA can’t be the only criteria of evaluation of a model. In the present paper it is evaluated the principal models found on the literature attending not only to the usual criteria described above but to other criteria like the apparition of numeric oscillation in the simulation results, the complexity in the models parameters calculation, the increase ratio of the crest of the wave, the energy absorption and the fitting of the wave form. To achieve this goal, it is compared the experimental results obtained from laboratory experiments of 3 different metal oxide surge arrester with the simulation results on the Alternative Transient Program (ATP) of 6 MOSA models, with wave forms 8/20 µs and 2/6 µs, of 4, 6, 8 y 10 kA in both cases, attending to 7 evaluation criteria proposed. Keywords- Metal Oxide Surge Arrester, Model, Transient, Laboratory Experiment, Simulation.

Type : Research paper

Published : Volume-5,Issue-1


Copyright: © Institute of Research and Journals

| PDF |
Viewed - 79
| Published on 2017-03-09
IRAJ Other Journals
IJMPE updates
Volume-12,Issue-2 (Feb, 2024 )
The Conference World