International Journal of Mechanical and Production Engineering (IJMPE)
.
Follow Us On :
current issues
Volume-12,Issue-1  ( Jan, 2024 )
Past issues
  1. Volume-11,Issue-12  ( Dec, 2023 )
  2. Volume-11,Issue-11  ( Nov, 2023 )
  3. Volume-11,Issue-10  ( Oct, 2023 )
  4. Volume-11,Issue-9  ( Sep, 2023 )
  5. Volume-11,Issue-8  ( Aug, 2023 )
  6. Volume-11,Issue-7  ( Jul, 2023 )
  7. Volume-11,Issue-6  ( Jun, 2023 )
  8. Volume-11,Issue-5  ( May, 2023 )
  9. Volume-11,Issue-4  ( Apr, 2023 )
  10. Volume-11,Issue-3  ( Mar, 2023 )

Statistics report
Apr. 2024
Submitted Papers : 80
Accepted Papers : 10
Rejected Papers : 70
Acc. Perc : 12%
Issue Published : 130
Paper Published : 2388
No. of Authors : 6802
  Journal Paper


Paper Title :
Analysis of Microstructure, Microhardness, Tensile Strength and Wear Properties of Al 6082/Sic Composite Using Multi-Pass Friction Stir Processing

Author :Sahil Nagia, Deval Kulshrestha, Prabhat Kumar, V. Jeganathan, Ranganath M. Singari

Article Citation :Sahil Nagia ,Deval Kulshrestha ,Prabhat Kumar ,V. Jeganathan ,Ranganath M. Singari , (2017 ) " Analysis of Microstructure, Microhardness, Tensile Strength and Wear Properties of Al 6082/Sic Composite Using Multi-Pass Friction Stir Processing " , International Journal of Mechanical and Production Engineering (IJMPE) , pp. 138-149, Volume-5,Issue-4

Abstract : High strength to weight ratio, light weight and various thermal, mechanical and recycling properties makes aluminium alloys an ideal choice for various industrial applications in sectors as varied as aeronautics, automotive, beverage containers, construction and energy transportation. Due to the rapid injection of molten aluminium into metal moulds under high pressure, casting defects and an abnormal structure, such as cold flake, are easily formed in the base metal. These defects significantly degrade the mechanical properties of the base metal. In order to satisfy the recent demands of advanced engineering applications, Aluminium matrix composites (AMCs) have emerged as a promising alternative. Among the various metal matrix composites manufacturing and forming methods, Friction Stir Processing (FSP) has gained recent attention. This work aims at analysing the microstructure, microhardness, tensile strength and wear properties of Al 6082/SiC composites fabricated by single, double and triple passes via FSP. The ultimate tensile strength of the processed material came out to be less than the parent material and the results showed that with the increase in the number of passes, the tensile properties of composites including ultimate tensile strength (UTS) and yield strength (YS) improved. The wear rate decreased with the increase in the number of passes. The hardness results showed that the specimen with maximum number of passes showed maximum hardness with the average value of 100HV whereas the parent material without any processing had an average of 60HV hardness value. Microstructure analysis revealed that as the number of passes increased, it produced a more homogeneous composition of the specimen due the presence of fine and equi-axed grains. Keywords - Friction Stir Processing, Aluminium 6082/SiC Composite, Tensile Strength, Pin-on-Disc Wear Analysis, Scanning Electron Microscopy, Vickers Hardness

Type : Research paper

Published : Volume-5,Issue-4


DOIONLINE NO - IJMPE-IRAJ-DOIONLINE-7934   View Here

Copyright: © Institute of Research and Journals

| PDF |
Viewed - 87
| Published on 2017-06-29
   
   
IRAJ Other Journals
IJMPE updates
Volume-12,Issue-1 (Jan, 2024 )
The Conference World

JOURNAL SUPPORTED BY